Synthesis of RP 56142: a New Immunoactive Peptide

Jean Bouchaudon, ${ }^{*}$ Gilles Dutruc-Rosset, Daniel Farge, and Claude James
Rhône-Poulenc Santé, Centre de Recherches de Vitry, 94403 Vitry-sur-Seine Cedex, France

Abstract

RP 56142, a new immunoactive peptide was synthesized on large scale (ca. 500 g) via L-2,6-diaminopimelic acid which was prepared by chemical or biochemical synthesis. The key derivative, N^{6}-benzyl-oxycarbonyl-L-2,6-diaminopimelamic acid was synthesized by two methods. In the first, we used a copper chelate procedure. In the second, we selectively deblocked the amine at the α-position to the free carboxylic group by the N-carboxyanhydride method. Condensation of N^{6}-benzyloxycarbonyl-L-2,6diaminopimelamic acid and the appropriately protected lauroyl dipeptide and removal of the protecting groups afforded RP 56142.

In a programme devoted to microbial and synthetic immunoadjuvants, we became interested in the immunomodulating and adjuvant activities of crude water-soluble extracts of a strain (NRLL 5776) of Streptomyces and attempted, in close collaboration with P. Jollès and D. Migliore-Samour (Laboratoire des Protéines, Université de Paris V), to isolate and identify the active component of such extracts. In the course of this work, P. Jollès and D. Migliore-Samour isolated a tetrapeptide (1), which turned out to be inactive when tested for immunostimulating activity. Our team showed in the past ${ }^{1}$ that chemical conjugation with lauric or palmitic acid of water-soluble peptidoglycan fragments from two strains of M. tuberculosis var. hominis markedly modified the adjuvant activities of these substances on both cell-mediated and humoral immune responses and, in particular, rendered them adjuvant-active in the absence of mineral oil. According to this lead, the tetrapeptide (1) was conjugated with lauric anhydride. Preliminary

results prompted us to prepare by total synthesis the corresponding lauroyl tetrapeptide RP 40639 (2) from racemic 2,6diaminopimelic acid. This synthetic substance thus obtained was shown to stimulate in vitro thymidine incorporation by mouse spleen cells, enhance in vitro phagocytosis of sheep erythrocytes (SRBC) by mouse peritoneal macrophages and increase in vivo the number of anti-SRBC plaque forming cells in mouse spleen and the resistance of mice against infection with Listeria monocytogenes. ${ }^{2-5}$ In our programme of studies on structure-activity of RP 40639, we synthesized 80 related compounds and it was found that the lauroyl tripeptide RP $56142(3)$ was as active as the tetrapeptide (2). ${ }^{6}$

Synthesis

The crucial problem in the synthesis of RP 56142 was to create the peptide bonds at the positions marked by arrows with
complete differentiation between the two pairs of amino acid functions in L-2,6-diaminopimelic acid. To resolve this problem, we synthesized N^{6}-benzyloxycarbonyl-L-2,6-diaminopimelamic acid (14).

Preparation of L-2,6-Diaminopimelic Acid L-(6).-The L-2,6diaminopimelic acid was prepared by chemical and biochemical synthesis.

Chemical synthesis (Scheme 1). A modification of the method developed by R. Roy et al. ${ }^{7}$ was employed. Thus piperidine-2,6-dicarbonitrile (4) was treated in an autoclave at $100^{\circ} \mathrm{C}$ for 4 h with a mixture of ammonium hydroxide and ammonium hydrogen carbonate. The resulting $5,5^{\prime}$-trimethylenedihydantoin (5) was hydrolysed without purification with hydrobromic acid and the mixture of three isomeric 2,6-diaminopimelic acids rac- and meso-(6) obtained was neutralized with Amberlite IR 120. The overall yield was $65-69 \%$. The rac and meso forms were separated by fractional crystallization of the dibenzyloxycarbonyl derivatives according to the method described by J. Van Heijenoort et al. ${ }^{8}$ The determination of the relative proportion of the different isomers of 2,6-diaminopimelic acid was obtained after hydrolysis, methanolysis, and trifluoracetylation of the derivatives. The separation of the volatile derivatives was performed by gas chromatography on an optically active capillary column. Following the method of J. Van Heijenoort, ${ }^{8}$ we obtained, after two recrystallizations, racemic 2,6-dibenzyloxycarbonylaminopimelic acid rac-(7), containing 5% of the meso isomer. For the resolution of the racemic rac-(7), we followed a method used by Y. Izumi. ${ }^{9}$ For the separation of the isomers of 2,6-diaminopimelic acid, Y. Izumi used a papaincatalyzed reaction of aniline with a bis-benzoyl derivative of 2,6-diaminopimelic acid. In the same way, we obtained the dianilide derivative (8). After removing the benzyloxycarbonyl groups and the amide functions with hydrochloric acid in acetic acid, we obtained $\mathrm{L}-2,6$-diaminopimelic acid $\mathrm{L}-(6)$ containing $<0.3 \%$ of the meso form and $<0.2 \%$ of the D form.

Biochemical synthesis. L-2,6-Diaminopimelic acid was also prepared from cultures of a mutant of Pseudomonas aeruginosa called PAC 7, following the method of F. Saleh et al. ${ }^{10}$ Using this method L-2,6-diaminopimelic acid (4 kg) was obtained with high optical purity ($>99.8 \%$).

Preparation of N^{6}-Benzyloxycarbonyl-L-2,6-diaminopimelamic acid (14).-First method (Scheme 2). The esterification of L-2,6-dibenzyloxycarbonylaminopimelic acid L-(7) with benzyl alcohol in the presence of toluene-p-sulphonic acid gave the dibenzyl ester (9) which was saponified with 0.86 equiv. of NaOH to give the monoester (10) following the method of A . Arendt et al. ${ }^{11}$ Amidification of $(\mathbf{1 0})$ with ammonia in methanol gave the monoamide (11) which was hydrogenolyzed to yield L-2,6-diaminopimelamic acid (12). For selective protection of

Scheme 1. Reagents and conditions: i, $\mathrm{NH}_{4} \mathrm{OH}, \mathrm{NH}_{4} \mathrm{HCO}_{3}$; ii, HBr ; iii, $\mathrm{PhCH}_{2} \mathrm{OCOCl}$, recrystallization; iv, PhNH_{2}, papaine; v, H^{+}
the amino groups on (12), we investigated benzyloxycarbonylation of (12) under copper chelate conditions at different pH values. Using the method of C. Nicot et al., ${ }^{12}$ we obtained a yield $<10 \%$ at pH 11.5 of the insoluble copper complex. However, at pH 8 with 0.5 equiv. of cupric bromide and 1.28 equiv. of benzyl chloroformate, a better yield was obtained (67%). Treatment of this complex (13) with hydrogen sulphide gave N^{6}-benzyloxycarbonyl-L-2,6-diaminopimelamic acid (14) (yield: 29%). Contrary to the results of C. Nicot et al., ${ }^{12}$ in our case, the benzyl chloroformate reacted with the amino group adjacent to the carboxamide function and not the free carboxylic acid, giving (14) instead of (15). The structure of (14) was assigned by the titrimetric method for continuous determination of carbon dioxide of A. Patchornik. ${ }^{12,13}$ Ninhydrin in acid medium on (14) provoked a rapid evolution of CO_{2} which is characteristic of a free α-amino acid (Figure 1). These results were confirmed by the identical spectral characteristics and α_{D} of (14) prepared according to the unequivocal second method.

Second method (Scheme 3). The monoesterification of the triethylammonium salt of L-2,6-dibenzyloxycarbonylaminopimelic acid $\mathrm{L}-(\mathbf{6})$ with an equimolecular quantity of p-nitrobenzyl bromide gave the monoester (16) according to the method of A. Arendt et al. ${ }^{14}$ The monoester was treated with phosphorus pentachloride in dichloromethane to afford the N-carboxy-anhydride (17), which upon hydrolysis, yielded O^{1}-p-nitrobenzyl- N^{2}-benzyloxycarbonyl-L-2,6-diaminopimelic acid (18) (81%). Amidification of (18) with ammonia gave N^{6} -benzyloxycarbonyl-L-2,6-diaminopimelamic acid (14) (66%).

Preparation of O^{1}-Benzyl-N-(N-Iauroyl-L-alanyl)-D-glutamic Acid (21).-The remaining fragment necessary for constructing the framework of RP 56142 was the appropriately protected lauroyl dipeptide (21). O^{1}-Benzyl- N-(t-butoxycarbonyl-L-alanyl)-D-glutamic acid (19) was prepared in the standard
manner. ${ }^{15}$ Treatment with hydrogen chloride in acetic acid removed the t -butoxycarbonyl protecting group to afford (20). Lauroyl chloride was allowed to react with silylated (20) prepared in situ by treatment with bis(trimethylsilyl)acetamide (BSA). A 79\% yield of the condensation product (21) was thus obtained which was sufficiently pure without column chromatography.

Preparation of $R P 56142$ (3).-Compound (21) was converted into the mixed anhydride in situ with isobutyl chloroformate and then allowed to react with an aqueous solution of the sodium salt of (14) to afford the blocked lauroyl tripeptide (22). When the condensation was performed using equimolecular quantities of the reagents, we obtained (22) as a mixture of diastereoisomers containing $c a .5 \%$ of the diastereoisomer with meso-2,6-diaminopimelic acid. This racemisation was proved by hydrolysis of (22) with 6 M HCl at $80^{\circ} \mathrm{C}$ over 16 h in a sealed tube and measurement of the percentage of the different isomers of 2,6-diaminopimelic acid in the hydrolysate by the method described above (Figure 2). However, by coupling the mixed anhydride with 1.1 equiv. of the sodium salt of (14), we eliminated racemisation and obtained (22) in a 76% yield. Removal of the benzyloxycarbonyl and the benzyl protecting groups by hydrogenolysis over 10% palladium -charcoal yielded after silica gel column chromatography the final product (3) (74\%).

Experimental

All solvents and reagents were of analytical grade and used without further purification. Petroleum refers to the fraction boiling $35-60^{\circ} \mathrm{C}$. M.p.s were determined on a Kofler melting point apparatus. The values are uncorrected. Optical activity was measured by determining the optical rotation of sodium D

(15)

(14)

Scheme 2. Reagents and conditions: i, $\mathrm{PhCH}_{2} \mathrm{OCOCl}$; ii, $\mathrm{PhCH}_{2} \mathrm{OH}, p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{3} \mathrm{H}$; iii, 1 equiv. NaOH ; iv, $\mathrm{NH}_{3} ; \mathrm{v}, \mathrm{H}_{2}-\mathrm{Pd} / \mathrm{C}$; vi, $\mathrm{CuBr}{ }_{2}$, $\mathrm{PhCH}_{2} \mathrm{OCOCl}, \mathrm{pH} 8$; vii, $\mathrm{CuBr}_{2} / \mathrm{PhCH}_{2} \mathrm{OCOCl}, \mathrm{pH} 11.5 / \mathrm{H}_{2} \mathrm{~S}$; viii, $\mathrm{H}_{2} \mathrm{~S}$
light with a Perkin-Elmer polarimeter model 241. Determination of the percentage of the different isomers of $\mathrm{A}_{2} \mathrm{pm}$: a mixture of a sample of the derivative of $\mathrm{A}_{2} \mathrm{pm}(2 \mathrm{mg})$ and anhydrous HCl in $\mathrm{MeOH}(6 \mathrm{~m}, 1 \mathrm{ml})$ was refluxed over 16 h in the absence of moisture and concentrated to dryness under reduced pressure. The residue was treated with trifluoroacetic anhydride ($200 \mu \mathrm{l}$) and the mixture was allowed to stand 0.5 h at $20^{\circ} \mathrm{C}$ and then concentrated to dryness. A solution $(1 \mu \mathrm{l})$ of the residue in $\operatorname{EtOAc}(1 \mathrm{ml})$ was injected as outlined in Figure 2. The optical isomers of $\mathrm{A}_{2} \mathrm{pm}$ were eluted in the order: $\mathrm{D}-\mathrm{A}_{2} \mathrm{pm}, \mathrm{L}-\mathrm{A}_{2} \mathrm{pm}$ and meso- $\mathrm{A}_{2} \mathrm{pm}$ (retention time: $c a .11 \mathrm{~min}$). The calculation of the percentage of the different isomers was made by internal normalization, supposing that the response factors of the three isomers were the same. The Chirasil-Val column separated $\mathrm{D}-\mathrm{A}_{2} \mathrm{pm}$ from the mixture of $\mathrm{L}-$ and meso $-\mathrm{A}_{2} \mathrm{pm}$ and the Wax-57 column separated meso- $\mathrm{A}_{2} \mathrm{pm}$ from the mixture of $\mathrm{L}-$ and $\mathrm{D}-\mathrm{A}_{2} \mathrm{pm}$. The percentage of the L isomer was obtained by difference.

Thin-layer chromatography was performed on silica gel precoated plates $60 \mathrm{~F}_{254}$ (Merck). The solvent systems (by vol.) were: A, EtOAc-toluene-AcOH (70:30:10); B, AcOH-EtOAc ($80: 20$); C, BuOH-pyridine-AcOH- $\mathrm{H}_{2} \mathrm{O}$ (50:20:6:24); D,

EtOAc-AcOH-H $\mathrm{H}_{2} \mathrm{O} \quad(40: 12: 10)$; $\mathrm{E}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}-\mathrm{MeOH}$ (65:35); F, EtOAc-MeOH (65:35); G, EtOAc-AcOH (60:40); and H, EtOAc-AcOH (99:1). Detection was mainly carried out with ninhydrin, the chlorine- o-toluidine reagent and iodine sulphuric acid.
${ }^{1} \mathrm{H}$ N.m.r. spectra were obtained at 250.13 MHz on a Bruker WM 250 and at 400.13 MHz on a Bruker AM 400. The frequencies (δ in p.p.m.) were given compared with the central line of $\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO (2.5 p.p.m.).

2,6-Diaminopimelic Acid rac- and meso-(6).-A mixture of 2,6-dicyanopiperidine (4) (337.5 g, 2.5 mol), ammonium bicarbonate ($1687 \mathrm{~g}, 20.8 \mathrm{~mol}$) and $\mathrm{NH}_{4} \mathrm{OH}(5 \mathrm{~m}, 1.5 \mathrm{l})$ was heated at $100-105^{\circ} \mathrm{C}$ in a 51 autoclave for 4 h . The insoluble material was filtered off, washed with water (400 ml), and the aqueous phases were concentrated to dryness. The resultant oil $\left(589 \mathrm{~g}, 98 \%\right.$) was combined with another batch of $5,5^{\prime}$ trimethylenedihydantoin (5) ($589 \mathrm{~g}, 2.45 \mathrm{~mol}$) obtained via an identical operation and refluxed with $\mathrm{HBr}(48 \%, \mathrm{~d}=1.49,5.61$, 49 mol) for 36 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$, filtered and concentrated to dryness. The residue was dissolved in water (4 1), then concentrated again to dryness and

Figure 1. Evolution of CO_{2} under the action of ninhydrin as a function of the heating time at $100^{\circ} \mathrm{C}$. The evolved CO_{2} obtained with 0.1 mm of product dissolved in 0.3 M citrate buffer (pH 2.5) (3 ml) under the action of ninhydrin (100 mg) was absorbed by benzylamine and titrated with 0.16 m sodium ethoxide in presence of Thymol Blue
redissolved in water (41). This solution was adsorbed on an Amberlite IR 120 column (H^{+}form, 10 l, i.d.: 16 cm). The column was washed with water (201) until no bromide ion was eluted, then the 2,6 -diaminopimelic acid was eluted with $\mathrm{NH}_{4} \mathrm{OH}(4 \mathrm{M}, 501)$. The eluate was concentrated to dryness and the residue was treated with EtOH (4 1), filtered, washed with EtOH (1 1), isopropyl ether (11) and dried to give a white solid rac- and meso-(6) ($658 \mathrm{~g}, 70 \%$).

Figure 2. Determination of the relative proportions of the isomers of $\mathrm{A}_{2} \mathrm{pm}$ by g.l.c. Chromatograph, Carlo Erba HRGC 4160; capillary column, 25 m ; vector gas, He (0.5 bar); detection by flame ionization

	(A)	(B)
Temperature		
$\left({ }^{\circ} \mathrm{C}\right)$		

Injector \& 270 \& 270

Detector \& 300 \& 300

Oven \& 180 \& 160\end{array}\right.\)

2,6-Dibenzyloxycarbonylaminopimelic Acid rac-(7).--Following the method of J. Van Heijenoort et al., ${ }^{8}$ the reaction of $2,6-$ diaminopimelic acid $(510 \mathrm{~g}, 2.68 \mathrm{~mol})$ with benzyl chloroformate ($1236 \mathrm{~g}, 7.24 \mathrm{~mol}$) gave rac-(7) (380.3 g) after recrystallization from EtOAc; m.p. $160^{\circ} \mathrm{C}$, meso 9.4%. A second recrystallization of combined batches of the acid (1036 g , meso 10%) gave a white crystalline solid rac-(7) (762 g , total yield; 45%), m.p. $167^{\circ} \mathrm{C}$ softening $150{ }^{\circ} \mathrm{C}$ (lit., ${ }^{8}$ m.p. $165.5^{\circ} \mathrm{C}$ softening $164-165^{\circ} \mathrm{C}$); meso 5%.
$\mathrm{L}-\mathrm{N}, \mathrm{N}$-Diphenyl-2,6-dibenzyloxycarbonylaminopimelamide (8). - To 0.8 M NaOH (726 ml) were added rac-(7) (meso 5%) $(133 \mathrm{~g}, 0.29 \mathrm{~mol})$ and aniline $(26.5 \mathrm{ml}, 0.29 \mathrm{~mol})$. The solution

Scheme 3. Reagents and conditions: i, p- $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Br}, \mathrm{Et}_{3} \mathrm{~N}$; ii, PCl_{5}; iii, H^{+}; iv, $\mathrm{NH}_{4} \mathrm{OH}$

Scheme 4.
was adjusted to pH 5.2 with AcOH . A solution of papain (Merck; biochemical utilisation) (7.25 g) and L-cysteine (2 g) in a mixture of water (145 ml) and phosphate buffer $\mathrm{pH} 5.2(0.1 \mathrm{~m}$ $\mathrm{KH}_{2} \mathrm{PO}_{4}-0.1 \mathrm{~m} \mathrm{Na}_{2} \mathrm{HPO}_{4} 100: 2$) (218 ml) was then added followed by phosphate buffer (870 ml). The reaction mixture was allowed to stand for 24 h at $37^{\circ} \mathrm{C}$ and then filtered. The solid was washed with water (200 ml) and dried. The product (74.7 g) was recrystallized from $\mathrm{AcOH}(1040 \mathrm{ml})(50.3 \mathrm{~g}, 57 \%$, m.p. $244^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+18.9^{\circ}$ (c 1 in MeOH); $\mathrm{L}^{2} \mathrm{~A}_{2} \mathrm{pm} 99.7 \%$, meso- $\mathrm{A}_{2} \mathrm{pm} 0.3 \%$; δ_{H} (400 and 250 MHz ; $\left[{ }^{2} \mathrm{H}_{6}\right.$]DMSO) 1.49 [$\left.2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{~A}_{2} \mathrm{pm}-4\right)\right], 1.69\left[4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{~A}_{2} \mathrm{pm}-3,5\right)\right], 4.17$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}) 5.03\left(4 \mathrm{H}, \mathrm{AB}, \mathrm{CH}_{2} \mathrm{OCO}\right), 7-7.65$ and $7.55(22 \mathrm{H}$, m and d, aromatic and OCONH), $10.03(2 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{CONH})$.
l-2,6-Diaminopimelic Acid Hydrate L-(6).-Compound (8) $(53.8 \mathrm{~g}, 88.4 \mathrm{mmol})$ was added to a mixture $(1: 1,1080 \mathrm{ml})$ of $\mathrm{HCl}(\mathrm{d}=1.19)$ and AcOH . The mixture was refluxed for 24 h and then concentrated to dryness. The residue was dissolved in water $(110 \mathrm{ml})$, neutralized to pH 6.4 with LiOH and $\mathrm{EtOH}(600$ ml) was added. The resultant white solid was filtered off, washed with $\mathrm{EtOH}(300 \mathrm{ml})$ and dissolved in water $(180 \mathrm{ml})$. Addition of EtOH (11) gave a white solid which was washed with EtOH $(200 \mathrm{ml})$, filtered off and dried ($16.8 \mathrm{~g}, 91 \%$), $[\alpha]_{\mathrm{D}}^{20}+43^{\circ}$ (c 0.88 in 5 M HCl$)\left[\right.$ lit., ${ }^{8}+44.5^{\circ}(\mathrm{c} 1$ in 5 m HCl$\left.)\right]$.

L-2,6-Dibenzyloxycarbonylaminopimelic Acid L-(7).-A vigorously stirred solution of L-(6) (obtained by biochemical synthesis) ($238 \mathrm{~g}, 1.14 \mathrm{~mol}$) in $\mathrm{NaOH}(1 \mathrm{~m} ; 6.25 \mathrm{l})$ at $0^{\circ} \mathrm{C}$ was treated during 1 h with benzyl chloroformate ($490 \mathrm{ml}, 3.43 \mathrm{~mol}$), then stirred for a further 1 h at $0^{\circ} \mathrm{C}$ and allowed to warm to room temperature over $16 \mathrm{~h} . \mathrm{NaOH}(1 \mathrm{~m}, 400 \mathrm{ml})$ was added during the first 5 h to maintain the pH at $8-9$. The unreacted benzyl chloroformate was removed by extraction with EtOAc (3 1), the aqueous layer was acidified with $\mathrm{HCl}(4 \mathrm{~m}, 800 \mathrm{ml})$ and kept overnight. The precipitated solid was isolated by decantation, dissolved in a mixture of methyl ethyl ketone and $\operatorname{EtOAc}(1: 1,21)$, washed with $\mathrm{HCl}(1 \mathrm{~m}, 500 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and then concentrated. A solution of the residue in EtOH (11) was treated during 0.5 h with dicyclohexylamine (500 ml), then diluted with EtOH (1 1) and kept at $10^{\circ} \mathrm{C}$ for 2 h . The precipitated solid was filtered off, washed successively with $\mathrm{EtOH}(900 \mathrm{ml})$ and ether (250 ml) and dried to afford $\mathrm{l}-(7)$ as the dicyclohexylammonium salt (723 g), $[\alpha]_{\mathrm{D}}^{20}+9^{\circ}$ (c 1 in $\mathrm{EtOH})\left[\mathrm{lit} .,{ }^{8}[\alpha]_{\mathrm{D}}+9.5^{\circ}(\mathrm{c} 1\right.$ in EtOH$\left.)\right]$. A second crop of 123 g was obtained by concentration to dryness of the mother liquors and addition of EtOAc (500 ml). The combined crops $(846 \mathrm{~g})$
were suspended in a mixture of water (51) and EtOAc (31) and treated with methanesulphonic acid ($4 \mathrm{~m} ; 620 \mathrm{ml}$). The organic layer was separated and the aqueous layer was washed with $\mathrm{EtOAc}(31)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated to 1.51 and allowed to stand at $0^{\circ} \mathrm{C}$ overnight. The precipitated solid was filtered off, washed with ether and dried to afford 222 g of $\mathrm{L}-(7)$ as a white solid. The mother liquors were concentrated to dryness and the residue was partitioned between EtOAc (21) and water (31). The organic layer was washed with methanesulphonic acid ($4 \mathrm{M}, 300 \mathrm{ml}$) and treated as above to yield a second crop of 260 g . Total yield $482 \mathrm{~g}(92 \%)$, $[x]_{\mathrm{D}}^{20}-4.7^{\circ}$ (c 2 in EtOH) (lit., ${ }^{8}[x]_{\mathrm{D}}-4.4^{\circ}$); m.p. $150^{\circ} \mathrm{C}$ (lit., ${ }^{8}$ $\left.153-155^{\circ} \mathrm{C}\right) ; R_{\mathrm{F}}(\mathrm{A}) 0.65$.

L-2,6-Dibenzyloxycarbonylaminopimelic Acid Dibenzyl Ester (9).-A solution of $\mathrm{L}-(7)(44.7 \mathrm{~g}, 97 \mathrm{mmol})$ in benzyl alcohol $(30 \mathrm{ml})$ and toluene (300 ml) was refluxed during 5 h with toluene-p-sulphonic acid (3 g), the water being removed azeotropically using a Dean and Stark distilling receiver. The mixture was allowed to warm to room temperature and was then filtered. The solid was washed with aqueous 5% sodium carbonate (400 ml) and water (400 ml) and dried ($55.4 \mathrm{~g}, 89 \%$), m.p. $118^{\circ} \mathrm{C} ; R_{\mathrm{F}}(\mathrm{B}) 0.53$.

L-2,6-Dibenzyloxycarbonylaminopimelic Acid Monobenzyl Ester ($\mathbf{1 0}$).-A solution of $(9)(55 \mathrm{~g}, 86 \mathrm{mmol})$ in benzyl alcohol $(400 \mathrm{ml})$ at $40^{\circ} \mathrm{C}$ was treated dropwise with a solution of 86% pure KOH pellets ($4.8 \mathrm{~g}, 74 \mathrm{mmol}$) in benzyl alcohol (400 ml) over 6.5 h , maintaining the temperature at $40^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 16 h and then concentrated to dryness. The oily residue was dissolved in water (11) and extracted with $\operatorname{EtOAc}(900 \mathrm{ml})$. The aqueous phase was acidified to pH 2 with $\mathrm{HCl}(4 \mathrm{~m}, 45 \mathrm{ml})$ and extracted with $\operatorname{EtOAc}(1.51)$. The organic extract was washed with a saturated solution of $\mathrm{NaCl}(500 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The dried solution was treated with dicyclohexylamine ($17 \mathrm{ml}, 86 \mathrm{mmol}$) and concentrated to dryness. The residual yellow oil was dissolved in EtOH $(100 \mathrm{ml})$, treated with water $(100 \mathrm{ml})$ and left to stand for 20 h at $0^{\circ} \mathrm{C}$. The white solid thus obtained, was filtered off, washed with water (100 ml) and dissolved in a mixture of EtOAc and water $(1: 1,400 \mathrm{ml})$. The aqueous phase was acidified with methanesulphonic acid ($1 \mathrm{~m}, 40 \mathrm{ml}$), the organic phase was decanted and washed with water (100 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to dryness ($15 \mathrm{~g}, 32 \%$) to give an orange oil; $R_{\mathrm{F}}(\mathrm{C}) 0.76$.

L-2,6-Dibenzyloxycarbonylaminopimelamic Acid (11).-A solution of ($\mathbf{1 0}$) ($19 \mathrm{~g}, 35 \mathrm{mmol}$) in $\mathrm{MeOH}(190 \mathrm{ml})$ was cooled to $0{ }^{\circ} \mathrm{C}$, saturated with NH_{3} and then immediately transferred into a 11 autoclave which was kept closed for 6 days at $20^{\circ} \mathrm{C}$. The solution obtained was degassed and concentrated. The residue was dissolved in water (250 ml), acidified to pH 2 with $\mathrm{HCl}(4 \mathrm{~m}, 30 \mathrm{ml})$ and extracted with EtOAc (300 ml). The organic extracts were washed with a saturated solution of NaCl $(100 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to dryness (15 g , 95%) to give an orange oil; $R_{\mathrm{F}}(\mathrm{C}) 0.68$.

L-2,6-Diaminopimelamic Acid Dichlorhydrate (12).-A solution of $(11)(15 \mathrm{~g}, 33 \mathrm{mmol})$ in a mixture of $\mathrm{MeOH}(300 \mathrm{ml})$ and concentrated $\mathrm{HCl}(d=1.19)(5.9 \mathrm{ml})$ was treated with 3% palladium-charcoal (15 g) and a slow stream of H_{2} was passed through the stirred mixture for 4 h . The mixture was then filtered and concentrated to dryness ($8.5 \mathrm{~g}, 99 \%$) to give a hard foam; $R_{\mathrm{F}}(\mathrm{C}) 0.1$.

L-2,6-Dibenzyloxycarbonylaminopimelic Acid Mono p-Nitrobenzyl Ester (16).-Following the method of A. Arendt et al., ${ }^{14}$ L-(6) $(480 \mathrm{~g}, 1.047 \mathrm{~mol})$ and p-nitrobenzyl bromide $(223 \mathrm{~g}, 1.033$
mol) yielded ($\mathbf{1 6}$) ($459 \mathrm{~g}, 74 \%$) as an orange oil; $R_{\mathrm{F}}(\mathrm{E}) 0.59$, $R_{\mathrm{F}}(\mathrm{F}) 0.73 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 1.44\left[2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ $\left.\left(\mathrm{A}_{2} \mathrm{pm}-4\right)\right], 1.55-1.85\left[4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{~A}_{2} \mathrm{pm}-3,5\right)\right], 3.90(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}-\mathrm{CO}_{2} \mathrm{H}\right), 4.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{CO}_{2}\right), 5.03$ and $5.06[4 \mathrm{H}, 2 \mathrm{AB}$, $\left.\left(\mathrm{CH}_{2} \mathrm{OCONH}\right) \times 2\right], 5.3\left(2 \mathrm{H}, \mathrm{s}, p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right), 7.35(11 \mathrm{H}$, m , aromatics and $\left.\mathrm{N} H \mathrm{CHCO}_{2} \mathrm{H}\right), 7.65(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}$, aromatics meta to NO_{2}), $7.86[1 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz},(\mathrm{~N} H \mathrm{CHCO})], 8.24$ (d, $J 9.24 \mathrm{~Hz}$, aromatics ortho to NO_{2}).
O^{1}-p-Nitrobenzyl- N^{2}-benzyloxycarbonyl- $\mathrm{L}-2,6$-diaminopimelic Acid (18).-Powdered $\mathrm{PCl}_{5}(112.8 \mathrm{~g}, 542 \mathrm{mmol})$ was added portionwise over 15 min to a stirred, ice-cooled solution of (16) ($268 \mathrm{~g}, 451 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 1). The resulting suspension was stirred for 50 min at $5^{\circ} \mathrm{C}$ and then for 15 min at $20^{\circ} \mathrm{C}$. Over the next $50 \mathrm{~min}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{l})$ was distilled off from the reaction mixture. The concentrate was cooled to $5^{\circ} \mathrm{C}$ and treated with petroleum-ether (6.66 l). The mixture was then left to stand at $5{ }^{\circ} \mathrm{C}$ for 24 h . The oily product was decanted, triturated with petroleum-ether (1.5 l), dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (11) and concentrated to dryness. The hard foam obtained was dissolved in a mixture of $\mathrm{AcOH}(1.741)$ and water (0.87 l), left to stand for 24 h at $20^{\circ} \mathrm{C}$ and then partitioned between water (7.21) and ether (21). The aqueous phase was neutralized to pH 5 by slow addition of $\mathrm{Na}_{2} \mathrm{CO}_{3}(400 \mathrm{~g})$ and the precipitated solid was filtered off, washed successively with water (11) and ether (1.5 l) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)(169.3 \mathrm{~g}, 81 \%$), m.p. $110-$ $115^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}+11.6^{\circ}\left(\mathrm{c} 1.25\right.$ in AcOH); $R_{\mathrm{F}}(\mathrm{C}) 0.61, R_{\mathrm{F}}(\mathrm{G}) 0.13$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 1.48$ [$\left.2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{~A}_{2} \mathrm{pm}-4\right)\right]$, $1.55-1.85\left[4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{~A}_{2} \mathrm{pm}-3,5\right)\right], 3.15[1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{CH}$ $\left.\left(\mathrm{A}_{2} \mathrm{pm}-6\right)\right], 4.10\left[1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{A}_{2} \mathrm{pm}-2\right)\right], 5.07(2 \mathrm{H}, \mathrm{AB}, J 11 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{OCONH}\right), 5.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{p}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right), 7.37(5 \mathrm{H}, \mathrm{m}$, aromatics), $7.65\left(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}\right.$, aromatics meta to $\left.\mathrm{NO}_{2}\right), 7.90$ $(1 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, \mathrm{CONH}), 8.25(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}$, aromatics ortho to NO_{2}).
N^{6}-Benzyloxycarbonyl-L-2,6-diaminopimelamic acid (14).First method. A solution of (12) $(5 \mathrm{~g}, 19 \mathrm{mmol})$ in water (35 ml) was treated with $\mathrm{CuBr}_{2}(2.14 \mathrm{~g}, 9.6 \mathrm{mmol})$, basified to pH 10 with $\mathrm{NaOH}(1 \mathrm{~m}, 45 \mathrm{ml})$ and stirred for 2 h at $20^{\circ} \mathrm{C}$. A small amount of insoluble material was filtered off and the filtrate was cooled to between -3 and $0^{\circ} \mathrm{C} . \mathrm{NaHCO}_{3}(9.6 \mathrm{~g})$ was added, followed by benzyl chloroformate ($4.1 \mathrm{ml}, 29 \mathrm{mmol}$) added dropwise over 30 min . The reaction mixture (pH 8) was then stirred for 18 h at $20^{\circ} \mathrm{C}$. The blue precipitate formed was filtered off, washed with water (90 ml), EtOH (90 ml), ether (90 ml) and dried to yield $4.18 \mathrm{~g}(67 \%)$ of the copper complex (13). The complex was then stirred for 1 h with $\mathrm{HCl}(1 \mathrm{~m}, 28 \mathrm{ml})$ at $20^{\circ} \mathrm{C}$. The insoluble material was filtered off, MeOH (14 ml) was added to the filtrate and a stream of $\mathrm{H}_{2} \mathrm{~S}$ was then passed through the mixture for 6 h . The mixture was left to stand for 16 h and the resulting black slurry was filtered and washed with water (15 ml). The combined filtrates were concentrated to 10 ml , brought to pH 7 by additon of $\mathrm{Et}_{3} \mathrm{~N}(5 \mathrm{ml})$ and then brought to pH 6.8 by addition of $\mathrm{HCl}(1 \mathrm{~m}, 5 \mathrm{ml})$. The white slurry thus obtained was kept at $0^{\circ} \mathrm{C}$ for 2 h , filtered off, washed successively with water (30 ml), EtOH (30 ml) and ether (30 ml) and dried ($1.78 \mathrm{~g}, 29 \%$), m.p. $248^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+18^{\circ}$ (c 0.3 in $\mathrm{AcOH}) ; \mathrm{L}-\mathrm{A}_{2} \mathrm{pm} 99.8 \%$, meso- $\mathrm{A}_{2} \mathrm{pm} 0.2 \% ; R_{\mathrm{F}}(\mathrm{C}) 0.46, R_{\mathrm{F}}(\mathrm{D})$ $\left.0.44 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ;{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 1.3-1.75\left[6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ $\left.\left(\mathrm{A}_{2} \mathrm{pm}-3,4,5\right)\right], 3.10[1 \mathrm{H}, \mathrm{m}, \mathrm{CHCO} 2 \mathrm{H}], 3.90(1 \mathrm{H}, \mathrm{m}$, CHCONH_{2}), $5.06\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OCONH}\right), 7(1 \mathrm{H}$, br s, CONH_{2}], 7.29 and $7.30-7.45(7 \mathrm{H}, \mathrm{d}$ and $\mathrm{m}, \mathrm{CONH}$ and aromatics, CONH_{2}).

Second method. (18) ($57.9 \mathrm{~g}, 126 \mathrm{mmol}$) was added to a mixture of aqueous 20% ammonia (1.24 I) and EtOAc (175 ml). The resultant mixture was stirred at $20^{\circ} \mathrm{C}$ for 24 h . The aqueous phase was separated, washed with EtOAc (600 ml), cooled to $10^{\circ} \mathrm{C}$ and neutralized to pH 6 by addition of $\mathrm{AcOH}(250 \mathrm{ml})$.

The resulting slurry was stirred over 0.5 h at $5^{\circ} \mathrm{C}$ and then filtered. The solid was washed successively with AcOH (400 ml) and EtOAc (400 ml) and dried ($23.5 \mathrm{~g}, 58 \%$), m.p. $248{ }^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}^{20}$ $+18.2^{\circ}$ (c 0.3 in AcOH); L-A ${ }_{2} \mathrm{pm} 99.8 \%$, meso- $\mathrm{A}_{2} \mathrm{pm} 0.2 \% ; R_{\mathrm{F}}(\mathrm{C})$ $0.46, R_{\mathrm{F}}(\mathrm{D}) 0.44 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)$: identical spectra with the sample above.

L-Alanyl-O ${ }^{1}$-benzyl-D-glutamic Acid Hydrochloride (20).Compound (19) ${ }^{15}$ ($50 \mathrm{~g}, 122 \mathrm{mmol}$) was dissolved in an anhydrous solution of HCl in $\mathrm{AcOH}(1.7 \mathrm{~m}, 425 \mathrm{ml})$. The resulting solution was stirred for 2 h , then added slowly to ether (2.5 1). The mixture was left to stand for 16 h at $0^{\circ} \mathrm{C}$, and the oily precipitate formed was decanted off the supernatant liquor and dissolved in acetone (300 ml). The resultant solution was concentrated and dried under reduced pressure to give an oil $\left.(33.5 \mathrm{~g}, 79 \%), R_{\mathrm{F}}(\mathrm{C}) 0.56 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ;{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 1.38[3 \mathrm{H}$, $\mathrm{d}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{3}$ (Ala) $], 1.85$ and $2.01\left[1 \mathrm{H}\right.$ each, $2 \mathrm{~m}, \mathrm{CH}_{2}$ (β-Glu)], 2.31 [2 H, t, $J 7.5 \mathrm{~Hz}, \mathrm{CH}_{2}(\gamma$-Glu) $], 3.89(1 \mathrm{H}, \mathrm{q}, J 7.5$ Hz, CH (Ala) $], 4.38[1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ (Glu) $], 5.14$ ($2 \mathrm{H}, \mathrm{AB}, J 13 \mathrm{~Hz}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 7.3-7.45(5 \mathrm{H}, \mathrm{m}$, aromatics), $9.04(1 \mathrm{H}, \mathrm{d}, J 7.5$ $\mathrm{Hz}, \mathrm{CONH}$).
O^{1}-Benzyl-N-(N-lauroyl-L-alanyl)-D-glutamic Acid (21).Lauroyl chloride ($58 \mathrm{ml}, 251 \mathrm{mmol}$) was added over 5 min to a solution of ($\mathbf{2 0}$) ($61.77 \mathrm{~g}, 179 \mathrm{mmol}$) and bis(trimethylsilyl)acetamide ($151 \mathrm{ml}, 616 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(770 \mathrm{ml})$ maintained at $-40^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $-10^{\circ} \mathrm{C}, 3 \mathrm{~h}$ at $20^{\circ} \mathrm{C}$ and then concentrated to dryness. The residual oil was treated with water (1.51) and the resultant solid formed filtered off, washed successively with water $(600 \mathrm{ml}), \mathrm{HCl}(0.1 \mathrm{~m}, 200 \mathrm{ml})$, $\mathrm{H}_{2} \mathrm{O}(600 \mathrm{ml})$, and ether $(600 \mathrm{ml})$ and dried. Recrystallization from $\mathrm{CH}_{3} \mathrm{CN}(250 \mathrm{ml})$ afforded a white solid $(66.56 \mathrm{~g}, 75.8 \%)$, m.p. $131{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-13.9^{\circ}(\mathrm{c} 1$ in MeOH$) ; R_{\mathrm{F}}(\mathrm{H}) 0.46 ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ;{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}$) $0.85\left[3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ (lauric acid) $], 1.17$ [$3 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{3}$ (Ala) $], 1.25$ [16 H, br m, $\mathrm{CH}_{2}\left(\mathrm{C}_{4}-\mathrm{C}_{11}\right.$ lauric acid)], $1.47\left[2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{C}_{3}\right.\right.$ lauric acid) $), 1.82$ and $2\left[1 \mathrm{H}\right.$ each, $\left.2 \mathrm{~m}, \mathrm{CH}_{2}(\beta-\mathrm{Glu})\right], 2.08\left[2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\left(\mathrm{C}_{2}\right.\right.$ lauric acid)], $2.25\left[2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{2}(\gamma\right.$-Glu) $], 4.32[2 \mathrm{H}, \mathrm{m}$, CH (Glu and Ala)], $5.09\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 7.35(5 \mathrm{H}, \mathrm{m}$, aromatics), 7.88 and 8.27 (1 H , each, 2d, $J 7.5 \mathrm{~Hz}, \mathrm{CONH}$ (Ala, Glu)], $12.15\left(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{CO}_{2} \mathrm{H}\right)$.
$\mathrm{N}^{2}-\left[\mathrm{O}^{1}\right.$-Benzyl-N-(N-lauroyl-L-alanyl)- $\gamma-\mathrm{D}-$ glutamyl $]-\mathrm{N}^{6}-$ benzyloxycarbonyl-L-2,6-diaminopimelamic Acid (22).-Isobutyl chloroformate ($54 \mathrm{ml}, 410 \mathrm{mmol}$) was added over 2 min to a stirred solution of (21) ($200.2 \mathrm{~g}, 410 \mathrm{mmol}$) in a mixture of tetrahydrofuran (THF) (8.31) and $\mathrm{Et}_{3} \mathrm{~N}(57 \mathrm{ml})$ maintained at $-6^{\circ} \mathrm{C}$. The resultant mixture was stirred for 20 min at $-6^{\circ} \mathrm{C}$ and then treated with a solution of (14) $(120 \mathrm{~g}, 371 \mathrm{mmol})$ in a mixture of water (3.7 l) and $\mathrm{NaOH}\left(1 \mathrm{~m}, 371 \mathrm{ml}\right.$) cooled to $5^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}, 16 \mathrm{~h}$ at $20^{\circ} \mathrm{C}$ and then acidified to pH 1.5 with $\mathrm{HCl}(1 \mathrm{~m}, 800 \mathrm{ml})$. The THF was removed by distillation and the resultant solid was filtered off, washed with water (31) and dried. The solid was dissolved in refluxing propan-2-ol (61), treated with EtOAc (61) and kept at $0^{\circ} \mathrm{C}$ for 64 h . The precipitate formed was filtered off, washed with cold EtOAc (21) and dried $221 \mathrm{~g}, 75 \%$), m.p. $180^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}$ -13.5° (c 1 in AcOH); $R_{\mathrm{F}}(\mathrm{C}) 0.73, R_{\mathrm{F}}(\mathrm{F}) 0.42 ; \mathrm{L}-\mathrm{A}_{2} \mathrm{pm} 99.8 \%$, meso- $\left.\mathrm{A}_{2} \mathrm{pm} 0.2 \% ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ;{ }^{2}{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 0.83[3 \mathrm{H}, \mathrm{t}$, $J 7 \mathrm{~Hz}, \mathrm{CH}_{3}$ (lauric acid)], $1.17\left[3 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ (Ala) $]$, $1.10-1.4\left[18 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{C}_{4}-\mathrm{C}_{11}\right.\right.$ lauric acid and $\left.\left.\mathrm{A}_{2} \mathrm{pm}-4\right)\right]$, $1.4-1.7\left[6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{C}_{3}\right.\right.$ lauric acid and $\left.\left.\mathrm{A}_{2} \mathrm{pm}-3,5\right)\right], 1.83$ and 1.97 [1 H each, $\left.2 \mathrm{~m}, \mathrm{CH}_{2}(\beta-\mathrm{Glu})\right], 2.09\left[2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ (C_{2} lauric acid) $], 2.16\left[2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{2}(\gamma\right.$-Glu $\left.)\right], 3.85[1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}\left(\mathrm{A}_{2} \mathrm{pm}-6\right)\right], 4.02\left[1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{A}_{2} \mathrm{pm}-2\right)\right], 4.21[1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}(\alpha-\mathrm{Glu})], 4.34$ [$1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ (Ala)], 5 and 5.1 (2 H each, AB and s, $\left.\mathrm{COOCH}_{2} \mathrm{Ar}\right), 6.94\left(1 \mathrm{H}, \mathrm{br}\right.$ m, $\left.\mathrm{CON} H_{2}\right), 7.23(1 \mathrm{H}, \mathrm{d}, J 7.5$ $\left.\mathrm{Hz}, \mathrm{CON} \mathrm{H}_{2}\right), 7.25-7.4\left(11 \mathrm{H}, \mathrm{m}\right.$, aromatics and $\left.\mathrm{CON} \mathrm{H}_{2}\right), 7.88$
[1 H, d, J 7.5 Hz, CONH (A $\left.\left.{ }_{2} \mathrm{pm}-2\right)\right], 7.94[1 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}$, CONH (lauroyl-Ala)], $8.45[1 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, \mathrm{CONH}$ (Ala-Glu)].
N^{2}-(N -Lauroyl-L-alanyl- γ-D-glutamyl)-L-2,6-diaminopimelamic Acid. RP 56142 (3).--A solution of (22) (680 g, 854 $\mathrm{mmol})$ in $\mathrm{AcOH}(16 \mathrm{l})$ was treated with 10% palladiumcharcoal (210 g) and a slow stream of H_{2} was passed through the stirred mixture for 12 h . The mixture was then filtered and concentrated to dryness. The residual solid was stirred with EtOAc (5 1), filtered, washed with EtOAc (1.5 l) and dried to afford a white solid, (498 g) purity (h.p.l.c.) $93 \% ; \mathrm{L}_{\mathrm{A}} \mathrm{A}_{2} \mathrm{pm}$ $\geqslant 99.8 \%$. The peptide was purified in 70 g portions by chromatography (Jobin-Yvon Modulprep with column id. 80 $\mathrm{mm})$. Thus a portion (70 g) of crude (3) was dissolved in AcOH $(400 \mathrm{ml})$ at $45^{\circ} \mathrm{C}$ and treated with neutral silica gel $(0.04-0.063$ mm , Merck) (200 g). The mixture was concentrated to dryness and introduced onto the column containing neutral silica gel ($0.04-0.063 \mathrm{~mm}$ Merck) (1200 g). Elution was carried out successively with a mixture of $\mathrm{EtOAc}-\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}(90: 12: 10$, 19.5 l) and a mixture of $\mathrm{EtOAc}-\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}(60: 12: 10,24$ 1), 500 ml fractions being collected every 5 min . Fractions 61 to 82 were combined and concentrated to dryness ($54.76 \mathrm{~g}, 78 \%$); purity (HPLC on a Gilson apparatus) 99.6% [column Sup-Rs S 5 ODS-2 (Prolabo), solvent: $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Na}_{2} \mathrm{SO}_{4}(25 \mathrm{~mm}) 30: 70$, flow rate $1 \mathrm{ml} / \mathrm{min}$, optical absorption monitored at 210 nm , retention time of the peak, 18 min$] ;[\alpha]_{\mathrm{D}}^{20}-17^{\circ}$ (c 0.1 in AcOH); $R_{\mathrm{F}}(\mathrm{C}) 0.36, R_{\mathrm{F}}(\mathrm{D}) 0.45$ (Found: C, $54.3 ; \mathrm{H}, 9.0 ; \mathrm{N}, 11.8$. Calc. for $\left.\mathrm{C}_{2}{ }_{7} \mathrm{H}_{49} \mathrm{~N}_{5} \mathrm{O}_{8} .1 .35 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 54.41 ; \mathrm{H}, 8.74 ; \mathrm{N}, 11.75\right) ; \delta_{\mathrm{H}}(250$ and 400 MHz and COSY experiment; $\left.\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 0.85[3 \mathrm{H}, \mathrm{t}$, $J 6.5 \mathrm{~Hz}, \mathrm{CH}_{3}$ (lauric acid) $], 1.18\left[3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ (Ala) $]$, $1.20-1.32$ [16 H, br m, $\mathrm{CH}_{2}\left(\mathrm{C}_{4}-\mathrm{C}_{11}\right.$ lauric acid $\left.)\right], 1.35-1.50$ [$4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{C}_{3}\right.$ lauric acid and $\left.\left.\mathrm{A}_{2} \mathrm{pm}-4\right)\right], 1.66\left[4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ $\left.\left(\mathrm{A}_{2} \mathrm{pm}-3,5\right)\right], 1.83$ and $1.90\left[1 \mathrm{H}\right.$ each, $2 \mathrm{~m}, \mathrm{CH}_{2}$ (β-Glu) $], 2.10$ $\left[4 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2}\left(\mathrm{C}_{2}\right.\right.$ lauric acid and γ-Glu) $], 3.6[1 \mathrm{H}, \mathrm{t}$, $\left.J_{\varepsilon-\delta} 5.5 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{A}_{2} \mathrm{pm}-6\right)\right], 4.01\left[1 \mathrm{H}, \mathrm{q}, J_{\alpha-\mathrm{NH}} 6.5 \mathrm{~Hz}, J_{\alpha-\beta} 6.5\right.$ $\mathrm{Hz}, \mathrm{CH}(\mathrm{Glu})], 4.07\left[1 \mathrm{H}, \mathrm{q}, J_{\alpha-\mathrm{NH}} 6.5 \mathrm{~Hz}, J_{\alpha-\beta} 65 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{A}_{2} \mathrm{pm}-\right.\right.$ 2)], 4.29 [1 H , quin., $J_{\alpha-\mathrm{NH}} 7 \mathrm{~Hz}, J_{\alpha-\mathrm{CH}} 7 \mathrm{~Hz}, \mathrm{CH}$ (Ala)], 7.33 and $7.88\left(1 \mathrm{H}\right.$ each, $\left.2 \mathrm{br} \mathrm{s}, \mathrm{CONH}_{2}\right), 7.8[1 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}, \mathrm{CONH}$ (Ala-Glu) $], 7.91$ [1 H, d, $\left.J 6.5 \mathrm{~Hz}, \mathrm{CONH}\left(\mathrm{Glu}-\mathrm{A}_{2} \mathrm{pm}\right)\right], 7.99$ [1 $\mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{CONH}$ (lauroyl-Ala)].

Acknowledgements

The authors are indebted to the analytical service of the Centre de Recherches de Vitry, especially to Mrs. E. Pacaud and Miss C. Rombi for the determination of the isomers of $A_{2} \mathrm{pm}$ and Mr. M. Vuilhorgne who performed the n.m.r. measurements. We thank also Mr. H. Halys for his technical assistance and Mrs. H. Mason for her assistance in translating the manuscript into English.

References

1 D. Migliore-Samour, F. Floc'h, R. Maral, G. Werner, and P. Jollès, Immunology, 1977, 33, 477.
2 D. Migliore-Samour, J. Bouchaudon, F. Floc'h, A. Zerial, L. Ninet, G. Werner, and P. Jollės, Life Sci., 1980, 26, 883.

3 D. Migliore-Samour, J. Bouchaudon, F. Floc'h, A. Zerial, L. Ninet, G. Werner, and P. Jollès, C. R. Hebd. Seances Acad. Sci., Ser. D, 1979, 289, 473.
4 G. Werner, F. Floc'h, A. Zerial, J. Bouchaudon, L. Ninet, D. Migliore-Samour, and P. Jollès, in 'Current Chemotherapy and Infections Disease,' eds. J. Nelson and C. Grassi, American Society for Microbiology, Washington, D.C., 1980, pp. 1728-1730.
5 F. Floc'h, J. Bouchaudon, G. Werner, D. Migliore-Samour, and P. Jollès, Ann. Immunol. (Paris), 1981, 132D, 265.

6 F. Floc'h and J. Poirier, Int. J. Immunopharmacol, in press.
7 R. Roy and M. Karel, Can J. Biochem., 1973, 51, 942.
8 J. Van Heijenoort and E. Bricas, Bull. Soc. Chim. Fr., 1968, 2828.
9 Y. Izumi, J. Chem. Soc. Jap., 1954, 75, 1152.
10 F. Saleh and P. White, J. Gen. Microbiol., 1976, 96, 253.
11 A. Arendt, A. Kolodziejczyk, and T. Sokolowska, Rocz. Chem., 1974, 48, 1305.
12 C. Nicot and E. Bricas, Acta Chim. Acad. Sci. Hung., 1965, 44, 229.
13 A. Patchornik and Y. Shalitin, Anal. Chem., 1961, 33, 1887.
14 A. Arendt, A. Kolodziejczyk, T. Sokolowska, and E. Szulfer, Rocz. Chem., 1974, 48, 1501.
15 P. Dezélée and E. Bricas, Biochemistry, 1970, 9, 823.

